US 10,599,560 B2

1
METHOD AND SYSTEM FOR IMPROVED
PERFORMANCE OF A VIDEO GAME
ENGINE

TECHNICAL FIELD

The present disclosure relates to the field of software tools
for improving the performance of a video game engine.

BACKGROUND OF THE INVENTION

Most modern video game development is done using
object oriented programming (OOP), wherein programming
objects are used for each element of a game. The program-
ming objects that represent elements within a game are often
called game objects or game entities and are referred to
herein as game objects. A game object can represent almost
anything in a game, including characters, guns, treasures,
trees, backgrounds, effects, etc. A game object is typically
defined as an instance of an OOP class structure that
includes methods and variables for the game object. Within
computer memory, an OOP object (e.g., an instance of a
class) is a structure that includes data and pointers to data in
other locations within memory. For example, a game char-
acter might belong to a class that has values for position,
orientation, size, mesh, etc., and also have methods defining
behavior for the character. The memory location that con-
tains the character game object includes data and can include
pointers to other memory locations which contain more data
for the character game object.

Current object oriented programing is not optimized for
performance due in part to the use of reference value objects
that contain pointers to data rather than containing data
directly. Existing game development technology often uses
reference value structures to define objects within a game.
This is based on the concept of an object within the object
oriented programming framework and is used for simplicity
of programming (e.g., since the behavior and attributes of a
programming object align well with those of a game object).
However, object oriented programming may be optimized
on a conceptual level and for ease of programming, but it is
not always optimized for performance with respect to video
game play. The main reason for the lack of optimized
performance is that OOP programing does not automatically
provide the optimum use of memory. OOP objects often
contain pointers to data while the data itself is scattered
randomly over distant memory locations. The result is that
game object data is often in random places within memory
and often contains pointers (e.g., to data) in other random
locations within memory. In order to access the data for one
or more characters (e.g., to determine the character location
in a scene), a game engine will often have to access several
separate random memory locations. There is also no hard
guarantee of the relative location of data within memory for
two different game objects. Accessing random memory
locations for all game objects in a video game scene which
runs at 60 frames per second (fps) or more is inefficient,
especially considering the large amount of game objects
which are typically in play during any given video game
frame. Having game object data scattered over memory
creates an inefficiency due to memory access time (e.g., the
time it takes a central processing unit (CPU) to access a
memory location, which is typically hundreds of CPU cycles
each time a memory location is accessed). All memory
accessing takes time; however, having to access memory in
random distant locations requires additional time because
the advantages of hardware prefetching are negated. The

10

20

25

30

35

40

45

50

55

60

2

additional time it takes to access the scattered data within
memory lowers the performance of executed game code at
runtime. This puts limitations, for a given CPU speed, on the
number of game objects that can be active in a frame during
game play if a frame rate is to be maintained (e.g., 60 frames
per second for typical games). This is particularly important
for virtual reality applications which require 90 frames per
second for minimum quality visual output. Modern game
design improves performance by incorporating graphical
processing units (GPUs) to offload processing from the
CPU, as well as multithreaded coding techniques to paral-
lelize the processing of game data over multiple CPU/GPU
cores. However, these techniques do not overcome the
fundamental issue of accessing separate random memory
locations for game objects.

Game performance can also be improved by considering
data oriented programming methodology as opposed to
object oriented programming methodology, however, data
oriented programming requires a high degree or knowledge
for a game developer, and is done manually, and is specifi-
cally targeted to each game. This is out of reach for a large
portion of game developers and game designers who have
only a basic knowledge of programming methodology.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention
will become apparent from the following detailed descrip-
tion, taken in combination with the appended drawings, in
which:

FIG. 1 is a schematic illustrating an entity component
system (ECS) device in an ECS system, in accordance with
one embodiment;

FIG. 2A is a schematic illustrating a memory layout for a
chunk in an ECS system, in accordance with one embodi-
ment;

FIG. 2B is a schematic illustrating a memory layout
within two chunks in an ECS system, in accordance with one
embodiment;

FIG. 3 is a schematic illustrating a memory layout for a
component data array within a chunk in an ECS system, in
accordance with one embodiment;

FIG. 4A is a schematic illustrating a method for integrat-
ing an entity into an archetype within an ECS system, in
accordance with one embodiment;

FIG. 4B is a schematic illustrating a method for creating
an entity within an archetype within an ECS system, in
accordance with one embodiment;

FIG. 4C is a schematic illustrating a method for modify-
ing an entity within an ECS system, in accordance with one
embodiment;

FIG. 5 is a schematic illustrating a method for modifying
entity data within an ECS system, in accordance with one
embodiment;

FIGS. 6A, 6B and 6C illustrate a method for deleting an
entity within an ECS system, in accordance with one
embodiment;

FIGS. 7A and 7B show a method for converting an object
oriented programming object to an entity within an ECS
system, in accordance with one embodiment;

FIG. 8 is a block diagram illustrating an example software
architecture, which may be used is conjunction with various
hardware architectures described herein; and

FIG. 9 is a block diagram illustrating components of a
machine, according to some example embodiments, config-
ured to read instructions from a machine-readable medium



